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We propose an analytic method for solving nonstatlonary heat-conduction problems for 
regions of complicated shape with nonstationary boundary conditions and energy sources. 

In the solution of nonstationary heat-conduction problems for nonclassical regions by the 
operational-structural method [i], we make simultaneous use of the Laplace transform and the 
structural method. The latter enables us -- when the Ritz method or the Bubnov-Galerkin method 
is used for solving the problem in the region of the mappings -- to overcome the difficulties 
of constructing a system of coordinate functions that arise as a result of the complicated 
geometric shape of a constructional element and the nature of the boundary conditions on its 
surface. However, when the temperature of the external medium, the heat flux, and the intens- 
ity of the internal sources of energy vary with time in a complex manner, we encounter seri- 
ous difficulties in connection with the use of the Laplace transform [2]. In the present 
article the solution of the heat-conduction problem with complicated nonstationary boundary 
conditions and energy sources is derived from the use of the operational-structural method in 
the form of Duhamel integrals [3]. As a result, when we have obtained the solution of the 
original problem in analytic form, we can retain in it the parameters characterizing the non- 
stationarity of the temperature of the external medium and the heat flux and the intensity 
of the internal energy sources. 

We consider the problem of the distribution of the temperature field ~(M, t) in the re- 
gion ~ when time varies in the interval 0 < t < =: 

r r ou (M, t) _ Au (M, t) + F,., (M) Q,,,, (t); u (M, t) = O, (1)  
Ot l=0 

z i 
L j u ( M ,  t ) l r i =  ~ f i~, (M) qim, (t), ] =  1 . . . . .  s, 

~=I (2) 

where Au(M, t) = I[Au(M, t)- ~(M)u(M, t)]; Lj is a first-order linear differential operator 

not dependent on t; U Fj = aQ To the equation and the boundary conditions (i), (2) we 
i=i 

apply the Laplace integral transform with respect to the variable t: 

u(M, p) ~- u (M, t); Q.,, (p) = Q~, (t); qi~, (P) = qi~, (t). 

Then i n  the reg ion  o f  mappings, we o b t a i n  

m1~ ] 

t i 

Lf . (M, PlI~j = ~ hm. (M) qSm, (p), i =  1 . . . . .  ~. 
t l ' t  gt ~ 1 

O) 

(4) 
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The. solution of problem (3), (4), in accordance with [!], will be sought in the form 

l j  n 

u (n) (M, p) = "N" q)im, (M) q/ .... (P) + ..~ ~" G (p) x~ (M), 
1=1 m l = l  /=1 

(5)  

where the x.(M) are coordinate functions satisfying homogeneous boundary conditions of the 
problem (3)~ (4), and Cjma(M) satisfies the conditions 

. . . . . .  / (Mt,  k = i, (M~ 
r~ t 0 , k=/=i. 

The Bubnov--Galerkin system for determining the mapping coefficients Ci(p) has the form 

where 

2 (A~h + pBi,~) Ci (P) = Et~ (p), 
�9 i = l  

(6) 

lj 

t n ~ l  ]~1 tlz2~l 

For the solution of system (6) we obtain 

Ci(P) = [ ~  Ek(p) Aih (p)] [A (p)]-l, (7) 

where A(p) is the determinant of the matrix of the system (6) 
ponding cofactors. We represent (7) in the form 

r 

--E 
rnt~l 

and the Aik(P ) are the corres- 

lj 

h ~ l  m z = l  /=1  nzz=l 

2 2 -- A~h (P) q- Pqim~ (P) ~3hi .... Aih (p) 
pQ.,, (p) o~k~, -pA (Pi- pA (p) 

h = l  . /=i  m2=l  k ~ l  

2 2 --{ - - I [  
= pQ-.,, (p) Cim, (p) + ~ Pqim~ (p) Ciim, (P). 

m t = l  /=1 m , = l  

Making use of the theorem on the differentiation and convolution of the originals [4], we 
obtain 

t , l j  t 

d C I ,  (t - -  *) d* 47 (T) - ~  Cqm, (t - -  T) dT, c, (t) = Q*' (~) --d 
m,=l 'o i=I m,=1 

where 

,m, (p) -~ C,'~ ( ); ,m~ (P) - -  C , ~  (t) 
The solution of the initial problem (i), (2) is found from (5): 
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t 

: E l   i:c I c, 

:s/t.,[/ d C rx (t ~ )%i (M)dT+r  (M) qim , (t) + qim, (%) - -~  i/m, - -  = 

1=1 m,=l 0 i=1 

t 

= Qm, (~1 -~- 
m 

s ] a V<~) ~M t -- ~) d~ § qjm, (0) [~,~, (M) , 
1=1 r n 2 : l  0 

(8) 

where 

IF<~) (M, t) "%, I . . . . .  =: c, . , .  (t) ~ (M)  (9) 

is the solution of the problem 

Ou (M, t) 
- -  Au  (M, t) + F,~, (M); u (M, t) t=o = O; 

at " 

Liu (M, t)[ri = O, i =  1, . . . ,  s, 

(lO) 

and 

t~ 

v!~) (M, t) : :  %' C ~ 
i = l  

(ll) 

is the solution of the problem 

0u (34,at t) _ Au (M, t); u (M, t)~=t 0= 0; (12) 

Thus, solutions (9), (ii) are constructed by means of the operational-structural method 
with a unified system of coordinate functions xi(M), and the solution of the initial problem 
(i), (2) is presented in the form of Duhamel integrals through solutions (9), (ii) of prob- 
lems (i0), (12). The representation of the solution of the initial problem in form (8) makes 
it unnecessary to find the mappings for the functions Q_ (t), q. _(t), makes the inverse Jmz _ _ . 
transform a stereotypical procedure, and makes it possible to carry out an analysis of the 
solution of the initial problem for different Qm,(t), qjma(t). 

On the basis of the above-described method for solving nonstationary heat-conduction 
problems for nonclassical regions, we developed algorithms which were set up in the form of 
programs on the BESM-6 computer. A test of the algorhtms, which was carried out for problems 
with different nonstationary boundary conditions and nonstationary energy sources, showed that 
the error in the calculation of the temperature fields is determined in practice by the com- 
plicated nature of the geometric information and is almost independent of the form of the 
nonstationary components of the boundary conditions and the functions for the energy sources 
Qmz(t), qjma(t)" 

As an example of the use of this method, let us consider a case in which the determina- 
tion of the temperature field u(x, y, t) in a plate containing a system of energy sources 
(Fig. i) reduces to the solution of the following nonstationary heat-conduction problem: 
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au (x, y, Fo) 
8 Fo 

3 

= ku (x, g, Fo) -- b2tt (x, g, Fo) q- E f~ (x, g) ~p~ (Fo), 
m = l  

[' P (x, g) E D,,, 
u (x, ~1, Fo) == 0, fm (x, ~/) = 0,01Xd ' 

Fo=0 ! 
t 0, (x, g) ~ Din, 

u(x, g, Fo) = 0 ,  Ou(x, y, Fo)[ =0 .  
r~  O v  [r~ 

(13) 

(14) 

The solution of problem (13), (14), in accordance with (8), can be represented in the form 

3 Fo 

--- - >j ~ O ir/(n)fx, , j, Fo_z)&, (i5) uIn) (x, y, Fo) = +,,~ (T) ~ .... 
.dmWwJ ) 

nz= 1 0 

where 

Wc,•) , . .  ~ Cis,, (Fo) 7u  (x, g) m t~, g, Fo)= 
i,] 

is the solution of the problem 

OW~, AWm-- b2W,~ § fi~; W,,~' o=0 ' - -  = 0; ( 1 6 )  
d Fo 

Wral, r~ =-0; OWm[ov r~ =0 ;  (17) 

the Xij(x , y) are coordinate functions which exactly satisfy the boundary conditions (14); 

% (D/j-- r [ (  &o~ d P i ) •  
)CiJ % § o~ ~ § ~ Pi - -  oh~ dx dx 

doh2 dV, dmli dPj Vi- o)~ 2 ; (18) 
• Vj--%~ dg dg + Pj--oh~ dx dx dg dy 

~q: = x ( 1 - - x ) ;  cot2 = g ( 1 - - y ) ;  %i  = 0 , 6 - - x ;  %2 = O , 6 - - y ;  

the Pi(x), Vi(Y) are Legendre polynomials. 

The coefficients Cijm(FO) ~'Cijm(P) , in accordance with (7), are determined by the formu- 
la 

(p) = z .hs  (p) ( [-, xhsl da; z,, s (p) = (p) 
. p a  (;) 

~,s  fa 

The inverse transform is realized by the expansion of Z'4ks(P) in simple fractions. In find- 
ing the roots Pl of the equation A(p) = 0, we determine the eigenvalues p~ = --(p~ + b =) of 
the problem 

AW--p*W=O; WIr,=0;  --0W0v r , = 0 "  

The eigenvalues Pl (l = i .... ,n) are real and positive and form a segment of a monotonically 
increasing sequence. As the number of coordinate functions increases, the values of p~ are 
stabilized [5]. 
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Fig. i. Geometric scheme of an 
element with an energy source, 
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Fig. 2. Distribution of the temperature field in an 
element (Fig. i) for: a) Fo = 0.01, b) 0.I, c) 1.0, 
d) i0. 

Figure 2a-d shows in spatial projections the distribution of the temperature field in the 
form of a dimensionless criterion function N(x, y, Fo) = ~(x, y, Fo) Xd/P of the coordinates 
x, y, for Bi = b = = 5; ~ (Fo) = 1 +A m exp(--Fo), AI = 19, A= = 0.5, A3 = i; n = 21 when Fo = 
0.01, 0.I, 1.0, and i0. mFor the test of the algorithms we considered the problem with a sys- 
tem of energy sources for a square plate with thermal insulation on its end faces (a plate 
with no holes cut out); the coordinate functions for this problem were chosen in the form of 
?ij from expression (18). The relative error of the test problem in comparison with the Four- 
ler method for n = 20, Fo~0.01, did not exceed 2%, and for the test problem and the funda- 
mental problem (13), (14) with small values of Fo, the values of the temperature calculated 
at the point most remote from the cutout (x = 0, y = 0) practically coincided. 

NOTATION 

u, temperature; p, density; X, thermal conductivity; c, specific heat capacity; n, number 
of coordinate functions; Fo = t(X/PCL) , Fourier number; ~, direction of the inner normal to 
the contour Pa; L, characteristic dimension of the plate; d, thickness of the plate; ~, sum 
of the total heat-transfer coefficients from the surface of the plate; Bi = aLa/Xd = b 2, Biot 
number. 

564 



LITERATURE CITED 

i. V. L. Rvachev and A. P. Slesarenko, The Algebra of Logic and Integral Transforms in Bound- 
ary-Value Problems [in Russian], Naukova Dumka, Kiev (i976). 

2. A. V. Lykov, Theory of Heat Conduction [in Russian], Vysshaya Shkoia, Moscow (1967). 
3. H. S. Carslaw and J. C. Jaeger, Conduction of Heat in Solids, Oxford Univ. Press (1959)~ 
4. V. A. Ditkin and A. P. Prudnikov, Integral Transforms and Operational Calculus [in Rus- 

sian], Nauka, Moscow (1974). 
5. S. G. Mikhlin, Variational Methods in Mathematical Physics [in Russian], Nauka, Moscow 

(1970). 

REMARKS ON WAVE SOLUTIONS OF THE NONLINEAR HEAT-CONDUCTION EQUATION 

V. A. Bubnov UDC 536.33 

Wave solutions of the nonlinear heat-conduction equation are analyzed and their rela- 
tion to self-similar solutions is established. Solutions of the hyperbolic and the 
nonlinear heat-conduction equations are compared. 

i. Undamped Thermal Waves 

Let us consider the nonlinear heat-conduction equation 

OTot oxO Ik(T) 0~xT] (i) 

and compare its wave solutions with solutions of the linear hyperbolic equation 

! 02T c~9 OT OZT 
+ -- (2) 

g2 Ot2 %o Ot OX 2 

According to the data [i], CvP/Xo = 0.753"10 -3 sec/cm 2 for helium at 2~ In this case, (2) 
can be replaced by the following 

02T __ gZ __O2T , (3) 
OtZ Ox z 

which describes the propagation of undamped thermal waves. To find the wave solutions, we go 
over to the wave variable 

= v ( ~  + ct (4) 

in (!). Let us mention the transformation formula 

OT dT OT ~, dv dT 
- - c  - - ;  - - - - -  

Ot d~ Ox dx d~ 

Ox - - T - ~  dx ~ d~ + l~l\ dx j d~ ~ 

Then taking into account that d2v/dx 2 = 0, we will have 

dT d~ ~ , ~  ) ~ k (T)--~ ~-~x d~ 
(5) 

Moscow Tool Institute. Translated from Inzhenerno-Fizicheskii Zhurnal, Vol~ 40, No. 5, 
pp. 907-913, May, 1981. Original article submitted March 13, 1980. 

0022-0841/81/4005-0565507.50 �9 1981 Plenum Publishing Corporation 565 


